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Abstract

Multivariate global polynomial approximations – such as polynomial chaos
or stochastic collocation methods – are now in widespread use for sensitivity
analysis and uncertainty quantification. The pseudospectral variety of these
methods uses a numerical integration rule to approximate the Fourier-type
coefficients of a truncated expansion in orthogonal polynomials. For problems
in more than two or three dimensions, a sparse grid numerical integration rule
offers accuracy with a smaller node set compared to tensor product approxi-
mation. However, when using a sparse rule to approximately integrate these
coefficients, one often finds unacceptable errors in the coefficients associated
with higher degree polynomials.

By reexamining Smolyak’s algorithm and exploiting the connections be-
tween interpolation and projection in tensor produce spaces, we construct a
sparse pseudospectral approximation method that accurately reproduces the
coefficients of basis functions that naturally correspond to the sparse grid in-
tegration rule. The compelling numerical results show that this is the proper
way to use sparse grid integration rules for pseudospectral approximation.

Keywords: sparse grids, pseudospectral methods, polynomial chaos,
stochastic collocation, non-intrusive spectral projection

1. Introduction

As the power and availability of computers has increased, the profile of
simulation in scientific and engineering endeavors has risen. Computer simu-
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lations that model complex physical phenomena now regularly aid in decision
making and design processes. However, the complexity and computational
cost of the codes often renders them impractical for design and uncertainty
studies, where many runs at different input parameter values are necessary
to compute statistics of interest. In such cases, designers use a relatively
small number of high fidelity runs to build cheaper surrogate models, which
are then used for the studies requiring many model evaluations.

It is now common to use a multivariate global polynomial of the input
parameters as the surrogate, particularly when one desires estimates of in-
tegrated quantities such as mean and variance of simulation results. Addi-
tionally, the polynomial surrogate is typically much cheaper to evaluate as
a function of the input parameters, which allows sampling and optimization
studies at a fraction of the cost. In an uncertainty quantification context –
where the input parameters often carry the interpretation of random variables
– this polynomial approximation method appears under the labels polynomial
chaos [1, 2] or stochastic collocation [3, 4], amongst others.

One of the primary disadvantages of the polynomial methods is the rapid
growth in the work required to compute the approximation as the number
of model input parameters increases; this generally limits the applicability of
these methods to models with fewer than ten input parameters. To combat
this apparent curse of dimensionality, many have proposed to use so-called
sparse grid methods [5], which deliver comparable accuracy for some prob-
lems using far fewer function evaluations to build the surrogate. The sparse
grid is a set of points in the input parameter space that is the union of
carefully chosen tensor product grids. When the tensor grids are formed
from univariate point sets with a nesting property, such as the Chebyshev
points, the number of points in the union of tensor grids is greatly reduced
– although this nesting feature is not necessary for the construction of the
sparse grids. The points in the sparse grid can be used as a numerical inte-
gration rule [6, 7], where the weights are linear combinations of weights from
the member tensor grids. Alternatively, the interpolating tensor product La-
grange polynomials constructed on the member tensor grids can be linearly
combined in a similar fashion to yield a polynomial surrogate [8], since a
linear combination of polynomials is itself a polynomial.

Another popular polynomial representation employs a multivariate or-
thogonal polynomial basis. When the coefficients of a series in this basis are
computed by projecting the unknown function onto each basis, the series is
a spectral projection or Fourier series [9, 10]; this is also known as the poly-
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nomial chaos expansion in an uncertainty quantification context [1, 2]. The
series must be truncated for computation; convergence to the true function
occurs in the mean-squared sense as one adds more basis polynomials. If the
integrals in the projections are approximated with a numerical integration
rule, this method is known as a pseudospectral projection [11, 12]. These
integral approximations only require the simulation outputs evaluated at the
quadrature points of the input space.

The question that naturally arises is: Which numerical integration rule
is appropriate to approximate the Fourier coefficients? Some early attempts
used Monte Carlo integration [13], but its relative inaccuracies overwhelm
the spectral accuracy of the truncated Fourier series. Other attempts used
tensor product Gaussian quadrature rules, but they do not scale to high di-
mensional parameter spaces due to the exponential increase in the number
of quadrature points with dimension. The sparse-grid quadrature rules have
shown promise for retaining the spectral accuracy while alleviating the curse
of dimensionality. However, in practice this approach produces unacceptable
errors in the coefficients associated with the higher order basis polynomi-
als, which forces a much stricter truncation than might be expected for the
number of function evaluations [14].

This paper presents a sparse pseudospectral approximation method (SPAM)
for computing the coefficients of the truncated Fourier series with the points
of the sparse grid integration rule that eliminates the error in the coefficients
associated with higher degree polynomials. This allows the number of terms
in the expansion to be consistent with the number of points in the sparse-
grid integration rule. The key is to separately compute the coefficients of a
tensor product polynomial expansion for each tensor grid in the sparse grid.
The linear combination of the tensor weights used to produce the sparse-grid
integration weights is then used to linearly combine the coefficients of each
tensor expansion. We show that this method produces a pointwise equiva-
lent polynomial surrogate to the one constructed from a linear combination
of tensor product Lagrange polynomials. Therefore error bounds from that
context can be applied directly. Recently, in the context of spectral methods
for discretized PDEs, Shen and coauthors [15, 16] proposed and analyzed
a closely related sparse spectral approximation using a hierarchical basis of
Chebyshev polynomials; the hierarchical structure results in increased effi-
ciency.

The remainder of the paper is structured as follows. In Section 2, we re-
view the relationship between Lagrange polynomial interpolation on a set of
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quadrature points and the pseudospectral approximation for univariate func-
tions; we then extend this analysis to multivariate tensor product approxi-
mation. Section 2 closes with a review of Smolyak’s algorithm. In Section
3, we detail the SPAM for approximating the Fourier coefficients using the
function evaluations at the sparse-grid integration points followed by some
interesting analysis results. In Section 4, we present numerical experiments
from (i) a collection of scalar bivariate functions and (ii) an elliptic PDE
model with parameterized coefficients. In each experiment, we compare the
approximate Fourier coefficients from the SPAM with ones computed directly
with the sparse grid integration rule. Finally we conclude with a summary
and discussion in Section 5.

2. Background and Problem Set-up

In this section, we briefly review the background necessary to understand
the SPAM; in particular, we examine the relationship between the Lagrange
interpolation on a set of Gaussian quadrature points and a pseudospectral
approximation in a basis of orthonormal polynomials. One purpose of this
review is to set up the notation, which departs slightly from the notation
in the disparate references. For the orthogonal polynomials, we follow the
notation of [17].

Consider a multivariate function f : S → R, where the domain S ⊂ R
d

has a product structure
S = S1 × · · · × Sd. (1)

Define a d-dimensional point s = (s1, . . . , sd) ∈ S. The domain is equipped
with a positive, separable weight function w : S → R+ where w(s) =
w1(s1) · · ·wd(sd) and

∫

Sk

sa
k wk(sk) dsk < ∞, k = 1, . . . , d, a = 1, 2, . . . (2)

The wk are normalized to integrate to 1, which allows the interpretation of
w(s) as a probability density function. In general, we consider functions
which are square-integrable on S, i.e.

∫

S

f(s)2 w(s) ds < ∞. (3)
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Such functions admit a convergent Fourier series in orthonormal basis poly-
nomials,

f(s) =

∞
∑

i1=1

· · ·
∞

∑

id=1

f̂i1,...,id πi1(s1) · · ·πid(sd) =
∑

i∈Nd

f̂i πi(s), (4)

where the equality is in the L2 sense, i = (i1, . . . , id) is a multi-index, and

f̂i =

∫

S

f(s) πi(s) w(s) ds (5)

is the Fourier coefficient associated with the basis polynomial πi(s). The
πik(sk) are univariate polynomials in sk of degree ik −1 that are orthonormal
with respect to wk(sk). In general, a pseudospectral method uses a numerical
integration rule to approximate a subset of the integrals (5); the remaining
terms are discarded.

While any square-integrable function admits a convergent Fourier series
in theory, the polynomial approximation methods perform best on a much
smaller class of smooth functions; we will restrict our attention to such func-
tion classes when citing appropriate error bounds. Before diving into the
multivariate approximation, we first review the univariate case.

2.1. Gaussian Quadrature, Collocation, Pseudospectral Methods

Consider the problem set-up above with d = 1. Let π(s) = [π1(s), . . . , πn(s)]T

be a vector of the first n polynomials that are orthonormal with respect to
the weight function w(s). The components of π(s) satisfy a recurrence rela-
tionship, which we can write in matrix form as

sπ(s) = Jπ(s) + βn+1πn+1(s)en, (6)

where en is an n-vector of zeros with a one in the last entry, and J (known
as the Jacobi matrix ) is the symmetric, tridiagonal matrix containing the
recurrence coefficients,

J =















α1 β1

β2 α2 β3

. . .
. . .

. . .

βn−1 αn−1 βn

βn αn















. (7)
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The zeros of πn+1(s) generate eigenvalue/eigenvector pairs of J by (6), which
we write

J = QΛQT , Λ = diag
(

[λ1, . . . , λn]
)

, (8)

where Q(i, j) = πi(λj)/‖π(λj)‖ are the elements of the normalized eigen-
vectors. The zeros λj of πn+1(s) are the points of the n-point Gaussian
quadrature rule for w(s); the quadrature weights νj ∈ R+ are given by

νj =
1

‖π(λj)‖2
, (9)

which are the squares of the first component of the jth eigenvector. A Gaus-
sian quadrature approximation to the integral is written

∫

S

f(s) w(s) ds ≈ Un
q (f) =

n
∑

j=1

f(λj) νj = fT
ν. (10)

The Un
q denotes the linear operation of quadrature applied to f ; the subscript

q is for quadrature. This notation will be used later when discussing sparse
grids. The n-vector f contains the evaluations of f(s) at the quadrature
points, and the n-vector ν contains the weights of the quadrature rule. It
will be notationally convenient to define the matrices

P(i, j) = πi(λj), W = diag([
√

ν1, . . . ,
√

νn]), (11)

and note that the orthogonal matrix of eigenvectors Q can be written Q =
PW.

The spectral collocation approximation of f(s) constructs a Lagrange
interpolating polynomial through the Gaussian quadrature points. Since
the points are distinct, the n − 1 degree interpolating polynomial is unique.
We write this approximation Un

l (f), where the subscript l is for Lagrange
interpolation, as

f(s) ≈ Un
l (f) =

n
∑

i=1

f(λi) ℓi(s) = fT l(s). (12)

The parameterized vector l(s) contains the Lagrange cardinal functions

ℓi(s) =
n

∏

j=1, j 6=i

s − λj

λi − λj

. (13)
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By construction, the collocation polynomial Un
l (f) interpolates f(s) at the

Gaussian quadrature points.
The pseudospectral approximation of f(s) is constructed by first truncat-

ing its Fourier series at n terms and approximating each Fourier coefficient
with a quadrature rule. If we use the n-point Gaussian quadrature, then we
can write the approximation as

f(s) ≈ Un
p (f) =

n
∑

i=1

f̂i πi(s) = f̂T
π(s), (14)

where f̂i is the pseudospectral coefficient,

f̂i =
n

∑

j=1

f(λj) πi(λj) νj , (15)

and the vector f̂ contains all coefficient approximations; the subscript p on Un
p

is for pseudospectral. Note that we have overloaded the notation by defining
f̂i as the pseudospectral coefficient (15), instead of the true Fourier coefficient
in (5). We next state two lemmas about the relationship between the spectral
collocation and pseudospectral approximations for future reference.

Lemma 1. The vector of evaluations of f at the quadrature points f is related
to the pseudospectral coefficients f̂ by

f̂ = QWf = PW2f . (16)

Proof. This is easily verified by equation (15) using the matrices defined in
(11).

Lemma 2. The pseudospectral approximation Un
p (f) is equal to the spectral

collocation approximation Un
l (f) for all s ∈ S.

Proof. By the uniqueness of the Lagrange polynomial interpolation, we can
write Pl(s) = π(s). Since P = QW−1, we have l(s) = WQT

π(s). Then

Un
l (f) = fT l(s)

= fTWQT
π(s)

= f̂T
π(s)

= Un
p (f),

as required.
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Lemma 2 implies that the pseudospectral approximation Un
p (f) inter-

polates f(s) at the Gaussian quadrature points. However, the equivalence
expressed in Lemma 2 breaks down in two important cases. When the num-
ber of terms in the orthogonal series is less than the number of points in the
quadrature rules, the orthogonal series representation no longer produces the
same polynomial as the Lagrange interpolant. Also, if a quadrature rule that
is not the Gaussian quadrature rule is used to approximate the Fourier co-
efficients, then the discrete Fourier transform from Lemma 1 is no longer
valid. The latter situation may occur if an alternative quadrature rule holds
practical advantages over the Gaussian quadrature rule.

Remark 1. We have restricted our attention to orthonormal polynomials and
Gaussian quadrature rules for a given weight function. However, transfor-
mations similar to Lemma 1 apply for Chebyshev polynomials and Clenshaw-
Curtis quadrature rules using a fast Fourier transform. For an insightful
discussion of the comparisions between these methods of integration and ap-
proximation, see [18].

2.2. Tensor Product Extensions

When d > 1, the above concepts extend directly via a tensor product
construction. For a given multi-index n = (n1, . . . , nd) ∈ N

d, it is convenient
to define the set of multi-indices

In = {i : i ∈ N
d, 1 ≤ ik ≤ nk, k = 1, . . . , d}. (17)

We can use this index set to reference components of the tensor product
approximations.

Tensor product Gaussian quadrature rules are constructed by taking cross
products of univariate Gaussian quadrature rules. For multi-index n, let Gn

be the set of d-variate Gaussian quadrature points,

Gn = {λi = (λi1 , . . . , λid) : i ∈ In}, (18)

where the points λik with ik = 1, . . . , nk are the univariate quadrature points
for wk(sk). The associated quadrature weights Wn are given by

Wn =
{

νi = νi1 · · · νid : i ∈ In

}

. (19)
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In words, the tensor product quadrature weights are products of the univari-
ate weights. To approximate the integral of f(s), compute

∫

S

f(s) w(s) ds ≈ (Un1

q ⊗ · · · ⊗ Und

q )(f)

=
n1
∑

i1=1

· · ·
nd
∑

id=1

f(λi1 , . . . , λid) νi1 · · · νid

=
∑

i∈In

f(λi) νi

= fT
n νn

where fn is the vector of function evaluations at the tensor grid of quadrature
points, and νn is a vector of the tensor product quadrature weights.

The spectral collocation approximation on the points Gn uses a basis of
product-type Lagrange cardinal functions. Define the vector of these basis
polynomials by

ln(s) = ln1
(s1) ⊗ · · · ⊗ lnd

(sd), (20)

where lnk
(sk) is a vector of the univariate Lagrange cardinal functions con-

structed on the univariate quadrature rule defined by λik ; see (13). Then the
tensor product spectral collocation approximation for the multi-index n is
given by

f(s) ≈ (Un1

l ⊗ · · · ⊗ Und

l )(f) (21)

=

n1
∑

i1=1

· · ·
nd
∑

id=1

f(λi1, . . . , λid) ℓi1(s1) · · · ℓid(sd) (22)

=
∑

i∈In

f(λi) ℓi(s) (23)

= fT
n ln(s). (24)

The tensor product pseudospectral approximation uses a product type mul-
tivariate orthonormal polynomial basis, which is simply a Kronecker product
of the univariate orthonormal polynomials. For a multi-index n, let πnk

(sk)
be the vector of univariate polynomials that are orthonormal with respect to
wk(sk) for k = 1, . . . , d. Then the vector

πn(s) = πn1
(s1) ⊗ · · · ⊗ πnd

(sd) (25)
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contains polynomials that are orthonormal with respect to w(s); we can
uniquely reference a component of the vector πn(s) by πi(s) with i ∈ In.
The tensor product pseudospectral approximation for the multi-index n is
given by

f(s) ≈ (Un1

p ⊗ · · · ⊗ Und

p )(f) (26)

=

n1
∑

i1=1

· · ·
nd
∑

id=1

f̂i1,...,id πi1(s1) · · ·πid(sd) (27)

=
∑

i∈In

f̂i πi(s) (28)

= f̂T
n πn(s), (29)

where f̂n is the vector of pseudospectral coefficients

f̂i =
n1
∑

j1=1

· · ·
nd
∑

jd=1

f(λj1, . . . , λjd
) πi1(λj1) · · ·πid(λjd

) νj1 · · ·νjd
(30)

=
∑

j∈In

f(λj) πi(λj) νj. (31)

The extensions of Lemmas 1 and 2 are then straightforward. For the multi-
index n, define the matrices

Q = Qn1
⊗ · · ·⊗Qnd

, P = Pn1
⊗ · · ·⊗Pnd

, W = Wn1
⊗ · · ·⊗Wnd

.
(32)

The proofs of Lemmas 1 and 2 hold with

f = fn, f̂ = f̂n, l(s) = ln(s), π(s) = πn(s). (33)

This is easily verified by employing the mixed product property of Kronecker
products. In words, we have that the Lagrange interpolant constructed on
a tensor product of Gaussian quadrature points (i.e., tensor product collo-
cation) produces the same polynomial approximation as a truncated Fourier
expansion with a tensor product basis, where the coefficients are computed
with the tensor product Gaussian quadrature rule (i.e., tensor product pseu-
dospectral). This equivalence occurs when the number of quadrature points
in each variable is equal to the number of univariate basis polynomials in
each variable; in other words, the number of points is the maximum degree
plus one in each variable.
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2.3. Smolyak’s Algorithm and Sparse Grids

The inescapable challenge for tensor product approximation is the expo-
nential increase in the work required to compute the approximation as the
dimension increases. An n-point quadrature rule in each of d dimensions
uses nd function evaluations. Thus, tensor product approximation quickly
becomes infeasible beyond a handful of dimensions. Smolyak’s algorithm [19]
attempts to alleviate this curse of dimensionality while retaining integration
and interpolation accuracy for certain classes of functions.

The majority of sparse grid applications in the literature rely on Smolyak’s
algorithm. The most common derivation starts by defining a linear operation
(e.g., integration, interpolation, or projection) on a univariate function. We
can generalize the notation used in (10), (12), and (14) by writing the linear
operation as Um(f). However, it is common to reinterpret the parameter
m in this context as a choice for how the number of points grows as m is
incremented. For example, nm = m for m > 0 would correspond to (10),
(12), and (14). Another common growth relationship is

n1 = 1, nm = 2m+1 − 1, m > 1. (34)

Such a relationship is useful when the quadrature/interpolation point sets are
nested, i.e., the points of the n-point rule are a subset of the points in the
2n+1 rule. This notably occurs for rules based on (i) Chebyshev points [17],
(ii) Gauss-Patterson2 quadrature formulas [20], or (iii) equidistant points. In
the case of a closed region of interpolation/integration, one may include and
reuse the endpoints of the interval in the sequence of approximations; see for
example the popular Clenshaw-Curtis integration rules [21]. Nested point
sets can greatly increase efficiency if f(s) is very expensive.

Define |m| = m1+· · ·+md. Given a univariate linear operator, Smolyak’s
algorithm can be written

A =
∑

m∈I

c(m) (Um1 ⊗ · · · ⊗ Umd). (35)

In the standard formulation [8, 6], the set of admissible multi-indices I is

I =
{

m ∈ N
d : l + 1 ≤ |m| ≤ l + d

}

(36)

2The Gauss-Patterson rules contain a specific pattern of nesting that is not applicable
for arbitrary n. See the reference for further details.
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for a given level parameter l. In this case, the coefficients c(m) are

c(m) = (−1)l+d−|m|

(

d − 1

l + d − |m|

)

. (37)

However, adaptive and anisotropic versions of Smolyak’s algorithm may con-
tain different choices for I and c(m); such variations are useful if a function’s
variability can be primarily attributed to a subset of the inputs. See [22, 23]
for details on such methods.

For our purposes, it is sufficient to note that Smolyak’s algorithm amounts
to a linear combination of tensor product operations. The specific tensor
products are chosen so that no constituent tensor grid contains too many
nodes. In the case of nested univariate rules, a node may be common to
many tensor products. In practice, one may structure the computation to
evaluate the function once per node in the union of tensor product grids – as
opposed to once per node per tensor grid. This greatly simplifies the sparse
grid integration, which can be written as a set of nodes and weights. If a
node is common to multiple constituent tensor grids, then its corresponding
weight is computed as a linear combination of the tensor grid weights; the
coefficients of the linear combination are exactly c(m). It is worth noting
that the weights of a sparse grid rule can be negative, which precludes its
use as a positive definite weighted inner product.

3. Sparse Pseudospectral Approximation Method

In practice, one may wish to take advantage of the relatively small number
of points in the sparse grid quadrature rule when computing a pseudospectral
approximation. This is often done by first truncating the Fourier series rep-
resentation of f(s) (see (5)), and then approximating its spectral coefficients
with a sparse grid quadrature rule. Unfortunately, choosing the parameters of
the sparse grid rule that will accurately approximate the integral formulation
of the Fourier coefficient is not straightforward. The is because – in constrast
to tensor product approximation – the Lagrange interpolating polynomial is
not equivalent to a truncated pseudospectal approximation with sparse grid
integration, where the number of basis polynomials is equal to the number of
points in the quadrature rule. The general wisdom has been to truncate con-
servatively for a sparse grid quadrature rule constrained by a computational
budget; such heuristics become more complicated when anisotropic sparse
grid rules are used.
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The SPAM approaches this problem from a different perspective; it is
merely the proper application of Smolyak’s algorithm to the tensor product
pseudospectral projection. We take advantage of the equivalence between
tensor product pseudospectral and spectral collocation approximations to
construct spectral approximations that naturally correspond to a given sparse
grid quadrature rule. In essence, since the sparse grid quadrature rule is
constructed by taking linear combinations of tensor product quadrature rules,
we can take the same linear combination of tensor product pseudospectral
expansions to produce an approximation in a basis of multivariate orthogonal
polynomials; a linear combination of expansions can be easily computed by
linearly combining the pseudospectral coefficients corresponding to the same
basis polynomial. Each tensor product pseudospectral expansion is simply
a transformation from the Lagrange basis using Lemma 1. In the numerical
examples of Section 4, we show compelling evidence that this procedure is
superior to directly applying the sparse grid quadrature rule to the integral
formulation of the Fourier coefficients.

More precisely, let I and c(m) be the admissible index set and coefficient
function for a given sparse grid quadrature rule. Then the sparse pseudospec-
tral approximation is given by

f(s) ≈ Ap(f) (38)

=
∑

m∈I

c(m) (Um1

p ⊗ · · · ⊗ Umd

p )(f) (39)

=
∑

m∈I

c(m) f̂T
m πm(s) (40)

where f̂m and πm(s) are defined as in (29). In practice, we linearly combine
the coefficients corresponding to common basis polynomials. With a slight
abuse of notation, let {π(s)} be the set of basis polynomials corresponding
to a vector π(s); the common basis set for Ap(f) is defined by

Π =
⋃

m∈I

{πm(s)}. (41)

Then we can write
Ap(f) =

∑

π(s)∈Π

f̂π π(s). (42)
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The coefficient corresponding to π(s) is given by

f̂π =
∑

m∈I

c(m) f̂i,m, (43)

where

f̂i,m =

{

f̂i if π(s) = πi(s) with i ∈ Im,
0 otherwise.

(44)

In words, (42) simply rearranges the terms in the sum so that each polyno-
mial basis appears only once. The next theorem allows us to apply existing
analysis results for sparse grid interpolation schemes to the SPAM.

Theorem 1. Under the conditions of Lemma 2, the sparse pseudospectral
approximation Ap(f) is point-wise equivalent to the sparse grid interpolation
approximation.

Proof. Using the tensor product version of Lemma 2, we can write

Ap(f) =
∑

m∈I

c(m) f̂T
m πm(s)

=
∑

m∈I

c(m) fT
m lm(s),

where fm and lm(s) are defined in (21). This completes the proof.

As a result of this theorem, all of the error analysis for sparse grid colloca-
tion and interpolation methods applies directly to the sparse pseudospectral
approximation. We refer the interested reader to references [8, 6, 5] for such
details, and we instead focus on the numerical experiments in the following
section. But before we move on, we prove an interesting fact about the mean
of Ap(f).

Corollary 1. The mean of the sparse pseudospectral approximation Ap(f)
is equal to the mean of f(s) approximated with the associated sparse grid
quadrature rule.

Proof. By orthogonality, the mean of a polynomial expanded in an orthonor-
mal basis is equal to the coefficient of the zero degree term, which is 1. Define
f̂1 to be the coefficient of the constant term in Ap(f). The constant term

14



also appears in each constituent tensor product pseudospectral approxima-
tion; denote this by f̂1,m for the multi-index m. Therefore, by (44),

f̂1 =
∑

m∈I

c(m) f̂1,m

=
∑

m∈I

c(m) (Um1

q ⊗ · · · ⊗ Umd

q )(f),

which is exactly the definition of sparse grid integration.

4. Numerical Experiments

In the following numerical experiments, we compare the coefficients com-
puted with the SPAM to direct approximation of the Fourier coefficients with
the corresponding sparse grid quadrature rule. To make the comparison fair,
we apply the sparse grid rule directly to each coefficient corresponding to
the basis set (41) for the sparse pseudospectral approximation. We con-
struct each sparse grid rule using (i) univariate non-nested Gauss-Legendre
quadrature points for a uniform weight function on the square [−1, 1]2, (ii)
nm defined as in (34), and (iii) I and c(m) defined as in (36) and (37).
The choice of the uniform weight function implies the πi(s) are the normal-
ized Legendre polynomials for the pseudospectral approximation. For all
experiments, we compute the largest feasible tensor product pseudospectral
approximation and call the resulting coefficients the truth. In all cases, the
apparent decay in the tensor product pseudospectral coefficients assures us
that we have used a sufficiently high order approximation to bestow the title
truth.

4.1. Five Bivariate functions

In the first experiment, we compare both methods on five bivariate func-
tions; see Table 1. For each function, we compute a tensor product pseu-
dospectral approximation of order 255 in each variable – 65,536 total quadra-
ture points. We plot the log of the magnitude of the pseudospectral coeffi-
cients with a surface plot to visually observe their decay. We then plot the
log of the magnitude of the sparse pseudospectral coefficients corresponding
to a level l = 7 sparse grid compared to the same sparse grid approximation
of the Fourier coefficients.
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# f(s1, s2)
1 s10

1 s10
2

2 es1+s2

3 sin(5(s1 − 0.5)) + cos(3(s2 − 1))
4 1/(2 + 16(s1 − 0.1)2 + 25(s2 + 0.1)2)
5 (|s1 − 0.2| + |s2 + 0.2|)3

Table 1: The five bivariate test functions.

With a level 7 grid, sparse pseudospectral approximation contains a max-
imum univariate degree of 129. For each test function, the corresponding set
of figures contains

(i) the tensor product pseudospectral coefficients up to maximum univari-
ate degree 100,

(ii) the SPAM coefficients up to maximum univariate degree 100,
(iii) the sparse grid integration approximation of the Fourier coefficients up

to maximum univariate degree 100,
(iv) a summary plot with coefficients up to univariate degree 129 ordered

by total order.

As a general comment, we see that the sparse grid integration produces
largely incorrect values for coefficients associated with higher degree poly-
nomials. More specific comments for the individual test functions are as
follows:

1. s10
1 s10

2 : This function evaluates the performance of the methods on a
monomial. We know that coefficients associated with polynomials of
degree greater than 10 in either x or y should be zero by orthogonality.
Additionally, since the monomial is an even function over the domain
with a symmetric weight function, the coefficients corresponding to odd
degree polynomials in either variable ought to be zero. This is verified
in the tensor product pseudospectral coefficients and respected by the
SPAM coefficients. However, the direct sparse integration produces
non-zero values for coefficients that should be zero. See Figure 1.

2. es1+s2: This function is analytic in both variables with rapid decay
of the Fourier coefficients. Observe that the direct sparse integration
yields large values for coefficients corresponding to the higher order
polynomials. See Figure 2.
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3. sin(5(s1 − 0.5)) + cos(3(s2 − 1)): In the language of the ANOVA de-
composition [24], this function has only main effects. Thus, the Fourier
coefficients for polynomials with mixed terms corresponding to inter-
action effects should be zero. Again, this is apparent in the tensor
product pseudospectral coefficients, and it is respected by the SPAM
coefficients. The direct sparse integration, however, produces non-zero
values for coefficients of the mixed polynomials; see Figure 3.

4. 1/(2 + 16(s1 − 0.1)2 + 25(s2 + 0.1)2): The pseudospectral coefficients
of this rational function decay relatively slowly; notice it needs up to
degree 40 polynomials in each variable to reach numerical precision,
according to the tensor product pseudospectral coefficients. The SPAM
coefficients do a much better job capturing the true decay of the Fourier
coefficients than the direct integration method, which does not appear
to decay at all. See Figure 4.

5. (|s1−0.2|+|s2+0.2|)3: This function has discontinuous first derivatives,
so we expect only first order algebraic convergence of its Fourier coeffi-
cients; on a log scale they decay very slowly. However, the interaction
effects disappear after degree three in either variable. Again, this is
visible in the tensor product pseudospectral coefficients and respected
by the SPAM coefficients, but the direct sparse grid integration pro-
duces non-zero values for coefficients that ought to be zero. See Figure
5.

In general, we find that the SPAM coefficients are significantly more accurate
than the direct application of the sparse grid integration rules to the Fourier
coefficients. This observation is rather counterintuitive. One may expect that
the sparse grid rule, by evaluating the product of the function times the basis
polynomial at more locations, would yield a more accurate approximation.
But this is clearly not the case for these examples. In Figure 6c, we plot
the decay of the truncation error for the sparse approximations as the level
increases. We approximate the truncation error by the sum of squares of
the neglected coefficients from the tensor product expansion. Since both
approximations use the same basis sets, this approximate truncation error
is identical. In Figures 6a and 6b we plot the decay in the error of the
approximated coefficients as the level increases; the error in the coefficients
is squared and summed. We see that the error in the SPAM coefficients
decays roughly like the truncation error, while the error in the direct sparse
grid integration does not decay. Of course, this summary plot ignores what is

17



(a) Tensor 100 × 100 (b) Coefficient decay

(c) SPAM (d) Sparse grid integration

Figure 1: Fourier coefficient approximations for s10
1 s10

2 .

most visible in Figures 1-5, which is that some of the coefficients associated
with lower order polynomials may be approximated well; it is the coefficients
of the higher order terms that contain most of the error.

4.2. PDE with Random Input Data

The last numerical example we examine is a linear elliptic diffusion equa-
tion with a stochastic diffusion coefficient. Let D = [0, 1]×[0, 1] and (Ω,B, P )
be a complete probability space. We seek the function u : D × Ω → R such
that the following holds P -a.e.:

−∇ · (a(x, ω)∇u(x, ω)) = 1, x ∈ D,

u(x) = 0, x ∈ ∂D.
(45)

18



(a) Tensor 100 × 100 (b) Coefficient decay

(c) SPAM (d) Sparse grid integration

Figure 2: Fourier coefficient approximations for es1+s2.
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(a) Tensor 100 × 100 (b) Coefficient decay

(c) SPAM (d) Sparse grid integration

Figure 3: Fourier coefficient approximations for sin(5(s1 − 0.5)) + cos(3(s2 −
1)).
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(a) Tensor 100 × 100 (b) Coefficient decay

(c) SPAM (d) Sparse grid integration

Figure 4: Fourier coefficient approximations for 1/(2+16(s1−0.1)2 +25(s2 +
0.1)2).
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(a) Tensor 100 × 100 (b) Coefficient decay

(c) SPAM (d) Sparse grid integration

Figure 5: Fourier coefficient approximations for (|s1 − 0.2| + |s2 + 0.2|)3.
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(a) SPAM coefficient error (b) Sparse grid integration coefficient er-
ror

(c) Truncation error

Figure 6: Comparison of truncation error to error coefficient approximation
between SPAM and direct sparse grid integration for each of the five test
functions, numbered according to Table 1.

23



Instead of the whole solution u, we are interested in computing the response
function

g(ω) =

∫

D

u(x, ω)dx (46)

which is the spatial mean of u over D.
The diffusion coefficient a(x, ω) is modeled as a uniform random field with

exponential covariance:

C(x, y) ≡ E[a(x, ω)a(y, ω)] = σ2e‖x−y‖1/L (47)

where σ = 0.1 is the standard deviation of the field and L = 1 is the cor-
relation length. It is approximated through a truncated Karhunen-Loéve
expansion [25]:

a(x, ω) ≈ âd(x, s(ω)) = a0(x) +

d
∑

k=1

√

λkak(x) sk(ω), (48)

where a0(x) = µ = 0.2 is the mean of the random field, (λk, ak(x)), k =
1, . . . , d are eigenvalue-eigenfunction pairs for the covariance operator:

∫

D

C(x, y)ak(x)dx = λkak(y), y ∈ D, (49)

and s = (s1, . . . , sd) are uncorrelated, uniform random variables on [−1, 1].
We make the further modeling assumption that the random variables are
independent. Define Γ = [−1, 1]d to be the range of s and

w(s) =

{

1/2d s ∈ [−1, 1]d

0 otherwise
(50)

to be the density of s. The eigenvalues and eigenfunctions are computed using
a pseudo-analytic procedure described in [2]. The eigenvalues are sorted in
decreasing order, and we use the first d = 5 eigenvalues/eigenfunctions to
approximate the random field.

Let πi : [−1, 1] → R, i = 1, 2, . . . be the normalized Legendre polynomial
of order i − 1. For a given multi-index i = (i1, . . . , id), define the tensor
product polynomial

πi(s) = πi1(s1) . . . πid(sd). (51)
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Given a set I of multi-indices, we approximate g(ω) by

ĝ(ω) =
∑

i∈I

ĝiπi(s(ω)) (52)

where the unknown coefficients ĝi are computed through pseudospectral pro-
jection using both SPAM and sparse grid integration. For a given s, the
corresponding response g is computed by solving

−∇ · (âd(x, s)∇u(x) = 1, x ∈ D,

u(x) = 0, x ∈ ∂D,

g =

∫

D

u(x)dx.

(53)

These equations are discretized using piecewise linear finite elements over
quadrilateral mesh cells of size 1/32. The resulting linear algebraic equa-
tions are solved via preconditioned GMRES using an algebraic multigrid
preconditioner with tolerance of 10−12. The finite element equations were
implemented and solved using a variety of packages within the Trilinos solver
framework [26]. The resulting SPAM and sparse grid integrations were pro-
vided by the Dakota package [27].

Note that instead of using the growth relationship in (34), we choose

nm = 2m − 1, m ≥ 1. (54)

This growth relationship yields tensor grids with many fewer points com-
pared to (34). The multiplication factor 2 ensures that all tensor grids will
share the mid-point of the domain, which reduces the total number of func-
tion evaluations. The corresponding coefficients of the stochastic response
function g are plotted in Figure 7 by the degree of the corresponding multi-
variate polynomial. One can see as the order of the polynomials increases,
the coefficients generated by SPAM decay as they should, whereas those gen-
erated through direct sparse integration begin to diverge for the higher order
polynomials. Note, however, that the difference is not as pronounced com-
pared to the bivariate test cases. We attribute this to the use of the growth
relationship (54), as opposed to (34) used with the bivariate functions.

5. Conclusions

Sparse grid integration rules are constructed as linear combinations of
tensor product quadrature rules. By taking advantage of the equivalence be-
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Figure 7: Comparison of approximate Fourier coefficients of the stochastic
response (52) of the linear diffusion problem (45) using SPAM and sparse
integration. The figure plots the coefficients according to the degree of asso-
ciated polynomial.
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tween the tensor product Lagrange interpolant and a pseudospectral approx-
imation with a tensor product orthogonal polynomial basis, we can linearly
combine the tensor product polynomial expansions associated with each ten-
sor grid quadrature rule to produce a sparse pseudospectral approximation.
We have numerically compared this approach to direct sparse grid integration
of the Fourier coefficients. The experiments show convincingly that the di-
rect integration approach produces inaccurate approximations of the Fourier
coefficients associated with the higher order polynomial basis functions, while
the SPAM coefficients are much more accurate.

The difference between SPAM and the sparse grid integration of the
Fourier coefficients is present in all Smolyak type approximations – includ-
ing anisotropic and adaptive variants. While not presented explicitly in this
paper due to space limitations, the authors have conducted similar studies
on such variants with similar results. The conclusions are clear. Given a
function evaluated at the nodes of a sparse grid integration rule, the proper
way to approximate the Fourier coefficients of an orthogonal expansion is the
SPAM.
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